COMPOSITE ELEMENT METHOD FOR VIBRATION ANALYSIS OF STRUCTURE, PARTII: C ${ }^{1}$ ELEMENT (BEAM)

P. ZENG
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China

(Received 20 May 1997, and in final form 29 June 1998)

Abstract

This paper is the second in a series of two devoted to a detailed study of Composite Element Method for vibration analysis of structures. The first paper focused on the principle and C^{0} element of the Composite Element Method. The present one concentrates on developing the beam element of the Composite Element Method. The related contents cover the expression of displacement field, the stiffness matrix and the consistent mass matrix of beam element, and transformation matrix. Especially, the detailed numerical verifications for the beam element of Composite Element Method are presented, which involve the h-version and the c-version. Also, some applications to the vibration analyses of lathe, automobile and frame are given in detail.

© 1998 Academic Press

1. INTRODUCTION

As has been shown in Part I of this series of papers, the Composite Element Method is a new approach combining the conventional FEM and the classical theory, with the goal of utilizing the advantages of both FEM and classical theory, i.e., the former's versatility and the latter's closed analytical solution. This paper addresses the derivation of the beam element of Composite Element Method, covering the formulation of stiffness and mass matrices, the h-version, the c-version, the superconvergence, and the applications to the vibration analysis of lathe, automobile and frame.

2. DISPLACEMENT FIELD

Consider a bending beam as shown in Figure 1 where the local x-axis is taken in the axial direction of the element with origin at a corner (or local node) 1 . Assume that the rotary inertia and shear deformation can be neglected. We construct the displacement field function $W(x)$ as:

$$
\begin{equation*}
W(x)=W_{F E M}(x)+W_{C T}(x) \tag{1}
\end{equation*}
$$

- Derivation of $W_{\text {FEM }}(x)$ by FEM

Since there are four nodal displacements $v_{1}, \theta_{1}, v_{2}, \theta_{2}$, we assume a cubic displacement model for $W_{\text {FEM }}(x)$, which can be expressed as [1]

$$
\begin{align*}
W_{F E M}(\xi) & =v_{1}\left(1-3 \xi^{2}+2 \xi^{3}\right)+\theta_{1} l\left(\xi-2 \xi^{2}+\xi^{3}\right)+v_{2}\left(3 \xi^{2}-2 \xi^{3}\right)+\theta_{2} l\left(\xi^{3}-\xi^{2}\right) \\
& =\mathbf{N}(\xi) \mathbf{q} \tag{2}
\end{align*}
$$

where

$$
\left.\begin{array}{c}
\mathbf{N}(\xi)=\left[\begin{array}{llll}
\left(1-3 \xi^{2}+2 \xi^{3}\right) & l\left(\xi-2 \xi^{2}+\xi^{3}\right) & \left(3 \xi^{2}-2 \xi^{3}\right) & l\left(\xi^{3}-\xi^{2}\right)
\end{array}\right] \\
\mathbf{q}=\left[\begin{array}{lll}
v_{1} & \theta_{1} & v_{2}
\end{array} \theta_{2}\right.
\end{array}\right]^{\mathrm{T}} .
$$

- Derivation of $W_{C T}(x)$ by classical theory

We know that the Composite Element requires an analytical solution under the coupling boundary conditions. Here, for the beam element of Composite Element Method, these coupling boundary conditions should be

$$
\begin{gather*}
\left.W_{r}(x)\right|_{x=0}=0,\left.\quad W_{r}(x)\right|_{x=1}=0 \\
\left.W_{r}^{\prime}(x)\right|_{x=0}=0,\left.\quad W_{r}^{\prime}(x)\right|_{x=1}=0 \quad r=1,2,3, \ldots \tag{5}
\end{gather*}
$$

where $W_{r}(x)$ is the permissible displacement functions of deflection. Actually, this is the case of the clamped-clamped beam [see Figure 1(b)]. The corresponding solution under the condition (5) can yield the characteristic equation for natural frequency

$$
\begin{equation*}
\cos \lambda_{r}^{*} \cdot \cosh \lambda_{r}^{*}=1, \quad r=1,2,3, \ldots \tag{6}
\end{equation*}
$$

(a) FEM

(b) Classical solution

(a) CEM

Figure 1. Constructing of CEM for bending beam.
and the eigenfunctions (natural mode shapes) are found to be

$$
\begin{align*}
W_{r}(x) & =c_{r} \cdot \mathscr{F}_{r}\left(\lambda_{r}^{*}, x\right) \\
& =c_{r}\left[\sin \lambda_{r}^{*} \frac{x}{l}-\sinh \lambda_{r}^{*} \frac{x}{l}-\frac{\sin \lambda_{r}^{*}-\sinh \lambda_{r}^{*}}{\cos \lambda_{r}^{*}-\cosh \lambda_{r}^{*}}\left(\cos \lambda_{r}^{*} \frac{x}{l}-\cosh \lambda_{r}^{*} \frac{x}{l}\right)\right] \tag{7}
\end{align*}
$$

where c_{r} are a set of constants. Finally, the solution of dynamic problem, $w(x, t)$, is given as

$$
\begin{align*}
w(x, t)= & W_{r}(x) \cdot G_{r}(t) \\
= & c_{r} \mathscr{F}_{r}\left(\lambda_{r}^{*}, x\right) \cdot G_{r}(t) \\
= & c_{r}\left[\sin \lambda_{r}^{*} \frac{x}{l}-\sinh \lambda_{r}^{*} \frac{x}{l}-\frac{\sin \lambda_{r}^{*}-\sinh \lambda_{r}^{*}}{\cos \lambda_{r}^{*}-\cosh \lambda_{r}^{*}}\left(\cos \lambda_{r}^{*} \frac{x}{l}-\cosh \lambda_{r}^{*} \frac{x}{l}\right)\right] \\
& \cdot \sin \omega_{r}^{*} t \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{r}^{* 2}=\frac{E I}{\rho l^{4}} \lambda_{r}^{* 4}, \quad r=1,2,3, \ldots \tag{9}
\end{equation*}
$$

Note that $W_{r}(x)$ are a set of natural mode functions, which will be combined or embedded into the displacement field of the bending beam element in CEM together with the interpolation polynomial function of the conventional FEM.

So, as to the $W_{C T}(x)$ of equation (1), we take

$$
\begin{align*}
W_{C T}(x) & =\sum_{r=1}^{n} c_{r} \mathscr{F}_{r}\left(\lambda_{r}^{*}, x\right) \\
& =\phi(x) \mathbf{c} \tag{10}
\end{align*}
$$

where

$$
\begin{gather*}
\phi(\xi)=\left[\mathscr{F}_{1}\left(\lambda_{1}^{*}, \xi\right) \mathscr{F}_{2}\left(\lambda_{2}^{*}, \xi\right) \cdots \mathscr{F}_{r}\left(\lambda_{r}^{*}, \xi\right)\right] \tag{11}\\
\mathbf{c}=\left[c_{1} c_{2} \cdots c_{r}\right]^{\mathrm{T}} \tag{12}\\
\mathscr{F}_{i}\left(\lambda_{i}^{*}, x\right)=\sin \lambda_{i}^{*} \frac{x}{l}-\sinh \lambda_{i}^{*} \frac{x}{l}-\left(\frac{\sin \lambda_{i}^{*}-\sinh \lambda_{i}^{*}}{\cos \lambda_{i}^{*}-\cosh \lambda_{i}^{*}}\right)\left(\cos \lambda_{i}^{*} \frac{x}{l}-\cosh \lambda_{i}^{*} \frac{x}{l}\right) \\
i=1,2,3, \ldots \tag{13}
\end{gather*}
$$

and the λ_{i}^{*} satisfies equation (6).

- Combination of $W_{F E M}(x)$ and $W_{C T}(x)$

According to equation (1), we combine $W_{F E M}(x)$ and $W_{C T}(x)$ into $W(x)$, i.e.,

$$
\begin{align*}
W(\xi)= & W_{F E M}(x)+W_{C T}(x) \\
= & v_{1}\left(1-3 \xi^{2}+2 \xi^{3}\right)+\theta_{1} l\left(\xi-2 \xi^{2}+\xi^{3}\right)+v_{2}\left(3 \xi^{2}-2 \xi^{3}\right)+\theta_{2} l\left(\xi^{3}-\xi^{2}\right) \\
& +c_{1} \mathscr{F}_{1}\left(\lambda_{1}^{*}, \xi\right)+c_{2} \mathscr{F}_{2}\left(\lambda_{2}^{*}, \xi\right)+\cdots+c_{r} \mathscr{F}_{r}\left(\lambda_{r}^{*}, \xi\right) \\
= & \mathbf{N}(\xi) \mathbf{q}+\phi(\xi) \mathbf{c} \\
= & \mathbf{S}(\xi) \cdot \delta \tag{14}
\end{align*}
$$

where

$$
\begin{align*}
& \mathbf{S}(\xi)=[\mathbf{N}(\xi) \phi(\xi)] \\
& =\left[\begin{array}{lll}
\left(1-3 \xi^{2}+2 \xi^{3}\right) & l\left(\xi-2 \xi^{2}+\xi^{3}\right) & \left(3 \xi^{2}-2 \xi^{3}\right)
\end{array} l\left(\xi^{3}-\xi^{2}\right)\right. \\
& \left.\mathscr{F}_{1}\left(\lambda_{1}^{*}, \xi\right) \quad \mathscr{F}_{2}\left(\lambda_{2}^{*}, \xi\right) \cdots \mathscr{F}_{r}\left(\lambda_{r}^{*}, \xi\right)\right] \tag{15}\\
& \delta=\left[\mathbf{q}^{\mathrm{T}} \mathbf{c}^{\mathrm{T}}\right] \\
& =\left[\begin{array}{llllllll}
v_{1} & \theta_{1} & v_{2} & \theta_{2} & c_{1} & c_{2} & \cdots & c_{r}
\end{array}\right]^{\mathrm{T}} \tag{16}
\end{align*}
$$

and the generalized shape function matrix and the coordinates (or DOF) of CEM respectively. From the beading theory of beam, the axial strain induced in the element is given by

$$
\begin{equation*}
\varepsilon=-y \frac{\partial^{2} W(x)}{\partial x^{2}} \tag{17}
\end{equation*}
$$

where y is the distance from the neural axis. From equation (14) the strain-displacement relation can be expressed as

$$
\begin{align*}
\varepsilon & =-y \frac{\partial^{2} W(x)}{\partial x^{2}} \\
& =-\frac{y}{l^{2}} \frac{\partial^{2} \mathbf{S}(\xi)}{\partial \xi^{2}} \cdot \delta=\mathbf{B}(\xi) \cdot \delta \tag{18}
\end{align*}
$$

where

$$
\left.\left.\begin{array}{rl}
\mathbf{B}(\xi)= & -y\left[\frac{1}{l^{2}}(12 \xi-6) \quad \frac{l}{l}(6 \xi-4)\right. \\
& -\frac{1}{l^{2}}(12 \xi-6)
\end{array} \frac{l}{l}(6 \xi-2)\right] \quad \mathscr{F}_{1}^{\prime \prime}\left(\lambda_{1}^{*}, \xi\right) \mathscr{F}_{2}^{\prime \prime}\left(\lambda_{2}^{*}, \xi\right) \cdots \mathscr{F}_{r}^{\prime \prime}\left(\lambda_{r}^{*}, \xi\right)\right] \quad \begin{aligned}
\mathscr{F}_{r}^{\prime \prime}\left(\lambda_{r}^{*}, \xi\right)= & -\frac{\lambda_{r}^{* 2}}{l^{2}}\left[\sin \lambda_{r}^{*} \xi+\sinh \lambda_{r}^{*} \xi\right. \\
- & \left.\left(\frac{\sin \lambda_{r}^{*}-\sinh \lambda_{r}^{*}}{\cos \lambda_{r}^{*}-\cosh \lambda_{r}^{*}}\right)\left(\cos \lambda_{r}^{*} \xi+\cosh \lambda_{r}^{*}\right)\right] \quad r=1,2,3, \ldots
\end{aligned}
$$

and the λ_{r}^{*} satisfies equation (6).

3. STIFFNESS MATRIX AND CONSISTENT MASS MATRIX

When the matrix \mathbf{S} of shape function and the matrix \mathbf{B} of strain-displacement relation of composit element are available, we can derive the stiffness matrix and the consistent mass matrix by the following expressions [2]

$$
\begin{align*}
& \mathbf{k}^{e}=\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{D B} \mathrm{~d} V \tag{21}\\
& \mathbf{m}^{e}=\int_{V} \rho \mathbf{S}^{\mathrm{T}} \mathbf{S} \mathrm{~d} V \tag{22}
\end{align*}
$$

where \mathbf{D} is the elastic matrix, it will be equal to E (Young's modulus) in the case of planar beam element in the case of pure bending, and the superscript e denotes for each element. We calculate the stiffness matrix \mathbf{k}^{e} of the element according to the expression (21) as

$$
\begin{align*}
\mathbf{k}^{e} & =\int_{V} \mathbf{B}^{e \mathrm{~T}} \mathbf{D}^{c} \mathbf{B}^{e} \mathrm{~d} V \\
& =E \int_{A} \int_{0}^{l} \mathbf{B}^{e \mathrm{~T}} \mathbf{B}^{e} \mathrm{~d} x \mathrm{~d} A \\
& =\frac{E I}{l^{3}} \cdot\left[\begin{array}{ccccc|c}
v_{1} & \theta_{1} & v_{2} & \theta_{2} & c \\
12 & & & & \\
6 l & 4 l^{2} & & s y m & \\
-12 l & -6 l & 12 & & 0 \\
6 l & 2 l^{2} & -6 l & 4 l^{2} & \\
\hline & & 0 & & \mathbf{k}_{c c}
\end{array}\right] \begin{array}{c}
v_{1} \\
\theta_{1} \\
v_{2} \\
\theta_{2} \\
c
\end{array} \tag{23}
\end{align*}
$$

where $I=\int_{A} \bar{y}^{2} \mathrm{~d} A$ and $\mathbf{k}_{c c}$ is given by

$$
\mathbf{k}_{c c}=
$$

in which $\lambda_{1}^{*}, \ldots, \lambda_{r}^{*}$ are the constants, i.e.,

$$
\begin{align*}
\lambda_{1}^{*} & =4 \cdot 730041 \\
\lambda_{2}^{*} & =7 \cdot 853205 \\
\lambda_{3}^{*} & =10 \cdot 995608 \\
\lambda_{4}^{*} & =14 \cdot 137165 \\
\quad & \vdots \\
\lambda_{r}^{*} & =(r+0 \cdot 5) \pi, \quad r \geqslant 4 . \tag{25}
\end{align*}
$$

Similarly, from the expression (22) the consistent mass matrix \mathbf{m}^{e} of the element is given as

$$
\begin{align*}
\mathbf{m}^{e} & =\int_{V} \rho \mathbf{S}^{e \mathrm{~T}} \mathbf{S}^{e} \mathrm{~d} V \\
& =\rho A \int_{0}^{l} \mathbf{S}^{e \mathrm{~T}} \mathbf{S}^{e} \mathrm{~d} x \\
& =\rho A l .\left[\begin{array}{ccccc}
v_{1} & \theta_{1} & v_{2} & \theta_{2} & c \\
\frac{13}{35} & & & & \\
\frac{11}{210} l & \frac{1}{105} l^{2} & & \text { sym. } & \\
\frac{9}{70} & \frac{13}{420} l & \frac{13}{35} & & \\
-\frac{13}{420} l & -\frac{1}{140} l^{2} & -\frac{11}{210} l & \frac{1}{105} l^{2} & \\
& & \mathbf{m}_{q c} & & \mathbf{m}_{c c}
\end{array}\right] \begin{array}{c}
v_{1} \\
\theta_{1} \\
\theta_{2} \\
v_{2} \\
\theta_{2}
\end{array} \tag{26}
\end{align*}
$$

where $\mathbf{m}_{c c}$ is given as
\(\mathbf{m}_{c c}=\left[\begin{array}{ccccccc}c_{1} \& c_{2} \& c_{3} \& c_{4} \& c_{5} \& \cdots \& c_{r}

1.035936 \& \& \& \& \& \&

\& 0.998447 \& \& \& \& 0 \&

\& \& 1.000067 \& \& \& \&

\& \& \& 0.9999971 \& \& \&

\& \& 0 \& \& 1.0 \& \&

\& \& \& \& \& \ddots \&

\& \& \& \& \& \& 1.0\end{array}\right]\)| c_{1} |
| :---: |
| c_{2} |
| c_{3} |
| c_{4} |
| c_{5} |
| \vdots |
| c_{r} |

and $\mathbf{m}_{\text {qc }}$ is

$$
\mathbf{m}_{q c}=\left[\right] \begin{gather*}
 \tag{28}\\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
\vdots
\end{gather*}
$$

Note that the generalized coordinate δ^{e} is composed of two parts: the nodal coordinate \mathbf{q} (or nodal DOF) and the c-coordinate (or c-DOF) \mathbf{c} :

$$
\delta^{e}=\left[\begin{array}{llll|llll}
v_{1} & \theta_{1} & v_{2} & \theta_{2} & \mid & c_{1} & c_{2} & \cdots \tag{29}
\end{array} c_{r}\right]^{\mathrm{T}} .
$$

Stiffness and mass matrices of the planar beam element in CEM possess same properties as those of the conventional FEM [3], i.e.,
(1) Both the stiffness matrix and the mass matrix in the Composite Element Method are symmetric.
(2) The stiffness matrix in the Composite Element Method is positive semi-definite. Also, after elimination of rigid body motion, a stiffness matrix will be positive definite.
(3) The diagonal elements of both stiffness matrix and mass matrix are always positive.

4. SPATIAL BEAM ELEMENT AND COORDINATE TRANSFORMATION

4.1. Spatial beam element

A spatial beam element is a straight beam of uniform cross section which is capable of resisting axial forces, bending moments about the two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are shown in Figure 2.

If the local axes (xyz system) are chosen to coincide with the principal axes of the cross section, it is easier to construct the mass and stiffness matrices. According to the engineering theory of bending and torsion of beams, the axial displacements q_{1} and q_{4} depend only on the axial forces, and the torsional displacements θ_{1} and θ_{4} depend only on the torsional moments. However, for arbitrary choice of the $x y z$ coordinate system, the bending displacements in the $x y$ plane, namely, q_{2}, θ_{2}, q_{5} and θ_{5} depend not only on the bending forces acting in that plane (i.e., shear forces acting in the y-direction and the bending moments acting in the $x z$ plane), but also on the bending forces acting in the plane $x z$. On the other hand, if the $x y$, and $x z$ planes coincide with the principle axes of the cross section, the bending displacements and forces in the two planes can be considered to be independent

Figure 2. A spatial beam element.
of each other. In this section we shall choose the local $x y z$ coordinate system to coincide with the principle axes of the cross section with the x-axis representing the centroidal axis of the spatial beam element. Thus the displacements can be separated into four groups each of which can be considered independently of others.

We will first utilize the mass and stiffness matrices corresponding to different independent sets of displacements, which have been derived in the above, and then obtain the total mass and stiffness matrices of the element by superposition.

4.2. COORDINATE TRANSFORMATION

As we know, the element characteristics are calculated in the local coordinate systems suitably oriented for minimizing computational effort. However, the local coordinate system may be different for different elements. In such a case, before the element equations can be assembled, it is necessary to transform the element equations derived in local coordinate systems so that all the elemental equations are referred to a common global coordinate system.

In order to find the stiffness matrix and the mass matrix of the bar element of the Composite Element Method in the global coordinate system, we need to search the transformation matrix. Let a transformation matrix \mathbf{T}^{e} exist between the local and the global coordinate systems such that

$$
\begin{equation*}
\delta^{e}=\mathbf{T}^{e} \bar{\delta}^{e} \tag{30}
\end{equation*}
$$

where $\bar{\delta}^{e}$ is the generalized coordinates in the global coordinate system. The stiffness matrix \mathbf{K}^{e} and the mass matrix \mathbf{M}^{e} of the element corresponding to the global coordinate system are given as [4]

$$
\begin{align*}
\mathbf{K}^{e} & =\mathbf{T}^{e \tau} \mathbf{k}^{e} \mathbf{T}^{e} \tag{31}\\
\mathbf{M}^{e} & =\mathbf{T}^{e \tau} \mathbf{m}^{e} \mathbf{T}^{e} \tag{32}
\end{align*}
$$

The main properties of transformation can be found as:
(1) The transformation is carried out only for nodal coordinate, not for c-coordinate. The reason for this is that the c-coordinate is always defined in the
local coordinate system in a closed form, contributes only to the internal displacement field of the element and does not therefore influence its edge displacements.
(2) Since the transformation matrix \mathbf{T}^{e} is the matrix of direction cosines relating the two coordinate systems, it is orthogonal.

5. NUMERICAL VERIFICATION

5.1. a free-clamped beam

Now, we give a validation for Composite Element Method, using a free-clamped beam as an example. The contents include: discretization of 1,2 as well as 4 elements, effect of the number of c-DOF.

Consider the bending vibration of a free-clamped beam as shown in Figure 3(a). L is the length of beam, ρ, E are the mass density and Young's modulus respectively. Now, we idealize this beam into 1 element, 2 elements, and 4 elements, and then apply CEM to calculate the natural frequencies.

Let

$$
\begin{equation*}
\lambda_{i}^{4}=\frac{\rho A L^{4}}{E I} \omega_{i}^{2}, \quad i=1,2, \ldots \tag{33}
\end{equation*}
$$

where ω_{i} is the natural frequencies. We present the results below.

5.1.1. Discretization of 1 element

If we take total beam as 1 beam element, then consider several calculating schemes wherein $1 c$-DOF, $4 c$-DOF, $6 c$-DOF, $10 c$-DOF and $16 c$-DOF are chosen. Various order of eigenvalues λ_{i} resulting from the above calculating schemes are presented in Table 1, in comparison with the exact solutions.

From the results shown in Table 1, we can see that the resultant eigenvalues from λ_{1} to λ_{n} within the scope of the c-DOF number in each scheme will be very close to the exact solution (the maximum relative error $<0.05 \%$). For example,

Figure 3. A free-clamped beam and its discretization.
in the scheme of CEM $(1 \times 16 c)$, i.e., using one composite element with $16 c$-DOF, the total-DOF is 18 (i.e. c-DOF plus nodal DOF), the resultant eigenvalues from λ_{1} to λ_{16} are very close to the exact solution, and the maximum relative error (i.e., λ_{16}) only reaches 0.03575%.

5.1.2. Discretization of 2 elements

Now, we idealize this free-clamped beam into 2 elements [shown in Figure 3(b)]. Consider several calculating schemes wherein FEM, $1 c$-DOF, $2 c$-DOF are chosen. Various orders of eigenvalues λ_{i} in various schemes are presented in Table 2, which are compared with the exact solution.

The results of Table 2 also show that the calculated eigenvalues from λ_{1} to λ_{n} within the scope of c-DOF number in each scheme approximate the exact solution very well (the maximum relative error $<0 \cdot 5 \%$). For instance, in the scheme of CEM $(2 \times 2 c)$, i.e., using two composite elements with $2 c$-DOF, the total-DOF is 8 (i.e., c-DOF plus nodal DOF), the resulted eigenvalues from λ_{1} to λ_{4} are very close to the exact solution, and the maximum relative error (i.e., λ_{4}) only reaches $0 \cdot 25692 \%$.

Obviously, a comparison of Tables 1 and 2 shows that, in the case of an equal amount of computational efforts, the results of the scheme with 2 elements discretization are not better than those with 1 element discretization.

5.1.3. Discretization of 4 elements

Here, we idealize this free-clamped beam into 4 elements shown in Figure 3(c), and also consider several calculating schemes: FEM, $1 c$-DOF, $2 c$-DOF. Various orders of eigenvalues λ_{i} in various schemes are presented in Table 3, which are compared with the exact solution.

The results of Table 3 also show that the calculated eigenvalues from λ_{1} to λ_{n} within the scope of the c-DOF number in each scheme approximate the exact solution very well (the maximum relative error $<0.5 \%$). For instance, in the scheme of CEM $(4 \times 2 c)$, i.e., using four composite elements with $2 c$-DOF, the total-DOF is 16 (i.e., c-DOF plus nodal DOF), the resulting eigenvalues from λ_{1} to λ_{8} are very closed to the exact solution, and the maximum relative error (i.e., λ_{8}) only reaches 0.44593%.

Obviously, a comparison of Tables 1, 2 and 3 shows that, in the case of an equal amount of effort, the results of the scheme with 4 elements discretization are not better than those with 1 or 2 element discretization.

5.1.4. Effect of number of c-DOF

If we fix the number of total DOF as 12 , then consider several schemes: CEM $(1 \times 10 c)$ (i.e., total c-DOF is 10), CEM $(3 \times 2 c)$ (i.e., total c-DOF is 6), CEM $(4 \times 1 c)$ (i.e., total c-DOF is 4), FEM (i.e., total c-DOF is 0). The purpose of doing so is to investigate the effect of the number of c-DOF on eigenvalue with the computational effort remaining the same. The detailed results and comparisons are presented in Table 4.
From Table 4, we find that the accuracy achieved by CEM is superior to that by the conventional FEM. Moreover, the scheme with more c-DOF is superior

[^0]Table 2
λ_{i} of various schemes in case of 2 elements discretization

	Exact	FEM (2e)* c-DOF:0 Total-DOF:4	CEM $(2 \times 1 c)$ c-DOF:2 Total-DOF:6	CEM $(2 \times 2 c)$ c-DOF:4 Total-DOF:8
λ_{1}	1.875104	1.875557	1.875111	1.875107
λ_{2}	4.694091	4.713966	4.697333	4.694305
λ_{3}	7.854757	8.669320	7.870405	7.855822
λ_{4}	10.99554	14.76957	11.11274	11.02379
λ_{5}	14.13717			14.18547
λ_{6}	17.27876			17.51730
λ_{7}	20.42035			24.94674
λ_{8}	23.56195			33.88184

* Note: the symbol FEM (2e) of Table 2 denotes using 2 beam elements of the conventional FEM, CEM $(2 \times 2 c)$ means using 2 composite element with $2 c$-DOF each.
to that with less c-DOF. Note that the above comparison is based on the same computational effort used (i.e., total-DOF of each scheme is 12). If we compare the errors of each scheme with the exact solution, e.g., as to λ_{8}, the relative error of the CEM $(1 \times 10 c)$ scheme is 0.03535%, and the error of the FEM (6e) scheme already reaches $7 \cdot 6085 \%$; as to λ_{6}, the relative error of the CEM $(1 \times 10 c)$ scheme is 0.01638%, that of the CEM $(3 \times 2 c)$ scheme is 0.3732%, and that of the FEM (6e) scheme already reaches $0 \cdot 83009 \%$; as to λ_{4}, the relative error of the CEM $(1 \times 10 c)$ scheme is 0.0040925%, that of the CEM $(3 \times 2 c)$ scheme is 0.00864%, that of the CEM $(4 \times 1 c)$ scheme is $0 \cdot 1489 \%$, and that of the FEM (6e) scheme already reaches 0.32177%; as to λ_{1}, the relative error of the CEM $(1 \times 10 c)$ scheme is $0 \cdot 0 \%$, that of the CEM $(3 \times 2 c)$ scheme is $0 \cdot 0 \%$, the relative error by CEM $(4 \times 1 c)$ scheme is 0.0%, and that of the FEM (6e) scheme already reaches $0 \cdot 000907 \%$.

Table 3
λ_{i} of various schemes in case of 4 elements discretization

	Exact	FEM (4e)* c-DOF:0 Total-DOF:8	CEM $(4 \times 1 c)$ c-DOF:4 Total-DOF:12	CEM $(4 \times 2 c)$ c-DOF:8 Total-DOF:16
Order	1.875104	1.875133	1.875104	1.875104
λ_{1}	4.694091	4.696825	4.694152	4.694110
λ_{2}	7.854757	7.885103	7.856252	7.854947
λ_{3}	10.99554	11.07509	11.01191	10.99633
λ_{4}	14.13717	15.10421	14.15534	14.13819
λ_{5}	17.27876	19.14127	17.40013	17.28335
λ_{6}	20.42035	24.10067	20.73256	20.44178
λ_{7}	23.56195	30.87079	23.93568	23.66702
λ_{8}				

[^1]
5.1.5. Brief remarks

We briefly summarize some features of the c-DOF for the dynamic analysis of a bending beam, according to the above numerical results.

- The ability of the c-DOF to improve accuracy is greatly superior to that of the traditional node-DOF of FEM.
- The eigenvalues achieved by the c-DOF approximate very well the exact solution within the scape of c-DOF number (e.g., from Table 4, in the case of the same computational efforts used, the CEM $(1 \times 10 c)$ scheme brings about only the relative error of 0.03535% for λ_{8}, but the FEM (6e) scheme produces that of 7.6085%)
- Increasing the number of the c-DOF and decreasing the number of element (i.e., node-DOF) will efficiently improve the accuracy for dynamic analysis of structure. The numerical examples also show that an increase of c-DOF can lead to a superconvergence
- In the case of multi-discretization elements, the scheme with well-allocated c-DOF for each element is superior to other schemes.

5.2. COMPARISONS BETWEEN CEM AND FEM

We will compare the CEM and FEM regarding their h-version and c-version. Below all comparisons are symbolized by the computational effort (i.e., total-DOF).

5.2.1. h-version

The h-version of CEM is completely similar to that of FEM, i.e., improving the accuracy by refining the element mesh. In the cases of using $1 c$-DOF CEM and $2 c$-DOF CEM, we present the detailed results of the h-version in Tables 5 and 6 respectively.

Table 4
λ_{i} of various schemes in case of total-DOF $=12$

Order	Exact	$\begin{gathered} \text { CEM }(1 \times 10 c) \\ c \text {-DOF:10 } \\ \text { Total-DOF:12 } \end{gathered}$	$\begin{gathered} \text { CEM }(3 \times 2 c) \\ c \text {-DOF: } 6 \\ \text { Total-DOF: } 12 \end{gathered}$	$\begin{gathered} \text { CEM }(4 \times 1 c) \\ c \text {-DOF: } 4 \\ \text { Total-DOF: } 12 \end{gathered}$	$\begin{gathered} \text { FEM (6e) } \\ c \text {-DOF:0 } \\ \text { Total-DOF:12 } \end{gathered}$
λ_{1}	1-875104	$1 \cdot 875104$	1-875104	$1 \cdot 875104$	1.875087
λ_{2}	$4 \cdot 694091$	$4 \cdot 694100$	$4 \cdot 694145$	$4 \cdot 694152$	$4 \cdot 694673$
λ_{3}	7.854757	$7 \cdot 854857$	$7 \cdot 855258$	$7 \cdot 856252$	$7 \cdot 861944$
λ_{4}	10.99554	10.99599	10.99649	11.01191	$11 \cdot 03092$
λ_{5}	$14 \cdot 13717$	14•13845	14.14494	$14 \cdot 15534$	$14 \cdot 24302$
λ_{6}	17.27876	$17 \cdot 28159$	$17 \cdot 34325$	$17 \cdot 40013$	17.44219
λ_{7}	$20 \cdot 42035$	$20 \cdot 42555$	$20 \cdot 48156$	$20 \cdot 73256$	21.63393
λ_{8}	$23 \cdot 56195$	$23 \cdot 57028$	23.90490	23.93568	$25 \cdot 35466$

- 1 c element

In the case of using the $1 c$-DOF CEM, for a free-clamped beam shown in Figure 3, we consider the following schemes: when total-DOF is assigned as 6 , two $1 c$-DOF elements (i.e., CEM $(2 \times 1 c)$) and 3 FEM elements (i.e. FEM (3e)) are used respectively; when total-DOF is assigned as 12 , four $1 c$-DOF elements (i.e., CEM $(4 \times 1 c))$ and 6 FEM elements (i.e., FEM (6e)) are used respectively; when total-DOF is assigned as 18 , six $1 c$-DOF elements (i.e., CEM $(6 \times 1 c)$) and 9 FEM elements (i.e., FEM (9e)) are used respectively. All results are listed in Table 5. Relative errors are shown in Figures 4 and 5.

- 2 c element

In the case of using the $2 c$-DOF CEM, for a free-clamped beam shown in Figure 3, we consider the following schemes: when total-DOF is assigned as 8 , two $2 c$-DOF elements (i.e., CEM $(2 \times 2 c)$) and 4 FEM elements (i.e. FEM (4e)) are used respectively; when total-DOF is assigned as 12 , three $2 c$-DOF elements (i.e., CEM ($3 \times 2 c$)) and 6 FEM elements (i.e., FEM (6e)) are used respectively; when total-DOF is assigned as 20, five $2 c$-DOF elements (i.e., CEM $(5 \times 2 c)$) and 10 FEM elements (i.e., FEM (10e)) are used respectively. All results are listed in Table 6. The relative errors are shown in Figures 4 and 5.

5.2.2. c-version

The c-version of CEM is to increase c-DOF terms when choosing the trial function of displacement field in order to improve the accuracy. Previously, many numerical results of increasing c-DOF have shown the high efficiency and good approximation on eigenvalues, especially for higher-order eigenvalues (see Tables 1-4). Now, also for a free-clamped beam shown in Figure 3, we present a more detailed comparison of the c-version of CEM with the conventional FEM. The numerical results listed in Table 7 and the relative error curves shown in Figures 4 and 5 indicate that by the c-version of CEM we can obtain a superconvergence for eigenvalues of structure, especially for higher-order eigenvalues. For instance, as to λ_{1}, the result of the c-version of CEM (total-DOF $=6$) will nearly correspond to that of FEM (total-DOF $=18$); as to λ_{4}, the result of the c-version of CEM (total-DOF $=6$) will be better than that of FEM (total-DOF $=12$); as to higher-order eigenvalue λ_{16}, the relative error of c-version (total-DOF $=18$) is only $0 \cdot 03576 \%$, but the relative error by using FEM (total-DOF $=18$) already reaches 18.2475%.

5.2.3. Comments

From the detailed numerical results above, we can sum up some features of the h-version and c-version of beam element in the Composite Element Method as follows.
(1) The convergence of the h-version and c-version of the beam element is obviously superior to that of conventional FEM. With less computation effort, both the h-version and c-version of CEM can approximate the desired solution. Usually, against the same computational effort, the error of CEM is one order of magnitude less than that of the conventional FEM.
Table 5
λ_{i} of various schemes by h-version using 1 c element

Order	Exact	Total-DOF:6		Total-DOF:12		Total-DOF:18	
		$\begin{gathered} \text { CEM }(2 \times 1 c) \\ c \text {-DOF: } 2 \end{gathered}$	FEM (3e)	$\begin{gathered} \text { CEM }(4 \times 1 c) \\ c \text {-DOF: } 4 \end{gathered}$	FEM (6e)	$\begin{gathered} \text { CEM }(6 \times 1 c) \\ c \text {-DOF: } 6 \end{gathered}$	FEM (9e)
λ_{1}	1.875104	1.875111	1.875199	1.875103	1.875087	1.875080	1.875140
λ_{2}	4.694091	4.697333	4.701793	4.694152	4.694673	4.694101	4.694209
λ_{3}	7.854757	7.870405	7.903542	$7 \cdot 856252$	7.861944	7.854922	7.856264
λ_{4}	10.99554	11.11274	11.86048	11.01191	11.03092	10.99687	11.00339
λ_{8}	23.56195			23.93568	25.35466	23.66916	23.81524
λ_{10}	29.84513					30.30250	$31 \cdot 46236$

\footnotetext{
TABLE 6

Order	Exact	Total-DOF:8		Total-DOF:12		Total-DOF:20	
		$\begin{gathered} \text { CEM }(2 \times 2 c) \\ c \text {-DOF: } 4 \end{gathered}$	FEM (4e)	$\begin{gathered} \text { CEM }(3 \times 2 c) \\ c \text {-DOF: } 6 \end{gathered}$	FEM (6e)	$\begin{gathered} \text { CEM }(5 \times 2 c) \\ c \text {-DOF:10 } \end{gathered}$	FEM (10e)
λ_{1}	1.875104	1.875107	1.875133	1.875104	1.875087	1.875104	1.875085
λ_{2}	4.694091	4.694305	4.696825	4.694145	4.694673	4.694096	4.694164
λ_{3}	7.854757	7.855822	7.855103	7.855258	7.861944	7.854846	7.855755
λ_{4}	$10 \cdot 99554$	11.02379	11.07509	10.99649	11.03092	10.99591	11.00078
λ_{8}	23.56195			23.90490	$25 \cdot 35466$	$23 \cdot 57403$	23.75331
λ_{10}	29.84513					29.99291	34.74266

Figure 4. The relative errors of the 4th-order eigenvalue for a free-clamped beam.
(2) For low order of eigenvalues, both the h-version and c-version of the beam element can arrive at a superconvergence, although the c-version of CEM is superior to the h-version of CEM. It means that, with only few c-DOF, the CEM can obtain highly-accurate results. For higher-order of eigenvalues, only the c-version of CEM can continue to arrive at a superconvergence.

6. APPLICATIONS

6.1. vibration analysis of a lathe

As an example, consider a simple lathe shown in Figure 6 [5].

Figure 5. The relative errors of the 8th-order eigenvalue for a free-clamped beam.
Table 7

Order	Exact	Total-DOF:6		Total-DOF:12		Total-DOF:18	
		$\begin{gathered} \text { CEM }(1 \times 4 c) \\ c \text {-DOF: } 4 \end{gathered}$	FEM (3e)	$\begin{gathered} \text { CEM }(1 \times 10 c) \\ c \text {-DOF: } 10 \end{gathered}$	FEM (6e)	$\begin{gathered} \text { CEM }(1 \times 16 c) \\ c \text {-DOF: } 16 \end{gathered}$	FEM (9e)
λ_{1}	1.875104	1.875109	1.875199	1.875104	1.875087	1.875104	1.875140
λ_{2}	4.694091	4.694419	4.701793	4.694100	4.694673	4.694092	4.694209
λ_{3}	7.854757	7.857543	7.903542	7.854857	7.861944	7.854769	7.856264
λ_{4}	10.99554	11.00451	11.86048	10.99599	11.03092	10.99560	11.00339
λ_{8}	23.56195			$23 \cdot 57028$	$25 \cdot 35466$	23.56367	23.81524
λ_{10}	29.84513			29.86092	$34 \cdot 47107$	29.84937	31.46236

Figure 6. Components of a lathe.

Figure 7. Rigid model of a lathe.

Figure 8. CEM model of a lathe.

6.1.1. Rigid model

For a simplified vibration analysis, the lathe bed can be considered as a rigid body having mass and inertia, and the headstock and tailstock can each be replaced by lumped masses. The bed can be assumed to be supported on springs at the ends. Thus the final model will be a rigid body of total mass m and mass moment of inertia J_{0} and its C.G., resting on springs of stiffnesses k_{1} and k_{2}, as shown in Figure 7(a).
We assume that the parameters of the lathe in Figure 7 are chosen as: the mass of headstock $m_{A}=1000 \mathrm{~kg}$, the mass of tailstock $m_{B}=500 \mathrm{~kg}$, the mass of bed $m_{3}=2500 \mathrm{~kg}$, the length of lathe $l=2.4 \mathrm{~m}$, the height of bed $h=0.4 \mathrm{~m}$, the support springs $k_{1}=1 \times 10^{7} \mathrm{~N} / \mathrm{m}, k_{2}=8 \times 10^{6} \mathrm{~N} / \mathrm{m}$. So one can calculate the position of C.G. point as: $l_{1}=0.8 \mathrm{~m}, l_{2}=1.6 \mathrm{~m}$, the total mass $m=4000 \mathrm{~kg}$, the total mass moment of inertia $J_{0}=3553 \cdot 33 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.

For this system with two degree of freedom shown in Figure 7, any of the following sets of co-ordinates may be used to describe the motion:
(a) Deflections $x(t)$ of the C.G. and rotation $\theta(t)$.
(b) Deflection $x_{1}(t)$ and $x_{2}(t)$ of the two ends of the lathe AB .

- Equations of motion using $\boldsymbol{x}(\boldsymbol{t})$ and $\boldsymbol{\theta}(\boldsymbol{t})$

From the free-body diagram shown in Figure 7(b), with the positive values of the motion variables as indicated, the force equilibrium equation in the vertical direction can be written as

$$
\begin{equation*}
m \ddot{x}=-k_{1}\left(x-l_{1} \theta\right)-k_{2}\left(x+l_{2} \theta\right) \tag{34}
\end{equation*}
$$

and the moment equation about the C.G. can be expressed as

$$
\begin{equation*}
J_{0} \ddot{\theta}=k_{1}\left(x-l_{1} \theta\right) l_{1}-k_{2}\left(x+l_{2} \theta\right) l_{2} . \tag{35}
\end{equation*}
$$

Equations (34) and (35) can be rearranged and written in the matrix form as

$$
\left[\begin{array}{cc}
m & 0 \tag{36}\\
0 & J_{0}
\end{array}\right]\left[\begin{array}{l}
\ddot{\ddot{\theta}}
\end{array}\right]+\left[\begin{array}{cc}
\left(k_{1}+k_{2}\right) & -\left(k_{1} l_{1}-k_{2} l_{2}\right) \\
-\left(k_{1} l_{1}-k_{2} l_{2}\right) & \left(k_{1} l_{1}^{2}+k_{2} l_{2}^{2}\right)
\end{array}\right]\left[\begin{array}{l}
x \\
\theta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

From equation (36), one get the natural circular frequencies: $\omega_{1}=63 \cdot 56171 \mathrm{rad} / \mathrm{s}$, $\omega_{2}=89 \cdot 58034 \mathrm{rad} / \mathrm{s}$.

- Equations of motion using $x_{1}(t)$ and $x_{2}(x)$

Consider the transformation relation between (x, θ) and $\left(x_{1}, x_{2}\right)$ [see Figure 7(b)].

$$
\begin{gather*}
x=\left(\frac{x_{2}-x_{1}}{l_{1}+l_{2}}\right) l_{1}+x_{1} \tag{37}\\
\theta=\frac{x_{2}-x_{1}}{l_{1}+l_{2}} \tag{38}
\end{gather*}
$$

Table 8

$$
\begin{aligned}
& \text { Natural frequencies of a lathe by CEM (considering the effects of different masses of supports) } \\
& 678 \\
& \text { P. ZENG }
\end{aligned}
$$

Table 8					
Natural frequencies of a lathe by CEM (considering the effects of different masses of supports)					
Case	$\omega_{1}(\mathrm{rad} / \mathrm{s})$	$\omega_{2}(\mathrm{rad} / \mathrm{s})$	\ldots		
Rigid model	$0 \cdot 6356170 \mathrm{E}+02$	$0 \cdot 8958034 \mathrm{E}+02$			
$m_{1}=0 \mathrm{~kg}, m_{2}=0 \mathrm{~kg}$	$\begin{aligned} & 0 \cdot 67042500 \mathrm{E}+02 \\ & 0 \cdot 44014340 \mathrm{E}+05 \end{aligned}$	$0.88497730 \mathrm{E}+02$	$0 \cdot 25634080 \mathrm{E}+04$	$0.80921490 \mathrm{E}+04$	$0 \cdot 24115390 \mathrm{E}+05$
$m_{1}=100 \mathrm{~kg}, m_{2}=100 \mathrm{~kg}$	$\begin{aligned} & 0 \cdot 66493650 \mathrm{E}+02 \\ & 0 \cdot 19885570 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.87195230 \mathrm{E}+02 \\ & 0.25638380 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.89522130 \mathrm{E}+03 \\ & 0 \cdot 80835970 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 99905130 \mathrm{E}+03 \\ & 0 \cdot 24093830 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 17790290 \mathrm{E}+04 \\ & 0 \cdot 43978030 \mathrm{E}+05 \end{aligned}$
$m_{1}=200 \mathrm{~kg}, m_{2}=200 \mathrm{~kg}$	$\begin{aligned} & 0 \cdot 65954190 \mathrm{E}+02 \\ & 0 \cdot 14086130 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 85936240 \mathrm{E}+02 \\ & 0 \cdot 25563700 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.63798470 \mathrm{E}+03 \\ & 0.80746430 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.71061770 \mathrm{E}+03 \\ & 0.24073180 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 12609010 \mathrm{E}+04 \\ & 0 \cdot 43948040 \mathrm{E}+05 \end{aligned}$
$m_{1}=300 \mathrm{~kg}, m_{2}=300 \mathrm{~kg}$	$\begin{aligned} & 0 \cdot 65423930 \mathrm{E}+02 \\ & 0 \cdot 11518990 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 84719310 \mathrm{E}+02 \\ & 0 \cdot 25503090 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.52485360 \mathrm{E}+03 \\ & 0.80658890 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.58360590 \mathrm{E}+03 \\ & 0.24052440 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 10316680 \mathrm{E}+04 \\ & 0 \cdot 43921460 \mathrm{E}+05 \end{aligned}$
$m_{1}=500 \mathrm{~kg}, m_{2}=300 \mathrm{~kg}$	$\begin{aligned} & 0 \cdot 64866520 \mathrm{E}+02 \\ & 0 \cdot 10317240 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.83874820 \mathrm{E}+02 \\ & 0.25467930 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 45680150 \mathrm{E}+03 \\ & 0 \cdot 80614030 \mathrm{E}+04 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.52516480 \mathrm{E}+03 \\ & 0 \cdot 24041340 \mathrm{E}+05 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.89487460 \mathrm{E}+03 \\ & 0 \cdot 43908440 \mathrm{E}+05 \\ & \hline \end{aligned}$

Table 9 Natural frequencies of a lathe by CEM (considering the effects of different stiffness of lathe bed)					
$E\left(\mathrm{~N} / \mathrm{m}^{2}\right)$	$\omega_{1}(\mathrm{rad} / \mathrm{s})$	$\omega_{2}(\mathrm{rad} / \mathrm{s})$			
Rigid model	$0.63561710 \mathrm{E}+02$	$0 \cdot 89580340 \mathrm{E}+02$			
$E=2.1 \times 10^{10}$	$\begin{aligned} & 0 \cdot 64684360 \mathrm{E}+02 \\ & 0 \cdot 90421300 \mathrm{E}+03 \end{aligned}$	$\begin{aligned} & 0 \cdot 83845150 \mathrm{E}+02 \\ & 0 \cdot 10400810 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 45488550 \mathrm{E}+03 \\ & 0 \cdot 25514440 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.52140030 \mathrm{E}+03 \\ & 0.76027570 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 80147160 \mathrm{E}+03 \\ & 0 \cdot 13883880 \mathrm{E}+05 \end{aligned}$
$E=2 \cdot 1 \times 10^{11}$	$\begin{aligned} & 0 \cdot 64866520 \mathrm{E}+02 \\ & 0 \cdot 10317240 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 83874820 \mathrm{E}+02 \\ & 0 \cdot 25467930 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 45680150 \mathrm{E}+03 \\ & 0 \cdot 80614030 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.52516480 \mathrm{E}+03 \\ & 0.24041340 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 89487460 \mathrm{E}+03 \\ & 0 \cdot 43908440 \mathrm{E}+05 \end{aligned}$
$E=2 \cdot 1 \times 10^{12}$	$\begin{aligned} & 0 \cdot 64885570 \mathrm{E}+02 \\ & 0 \cdot 10322970 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.83872970 \mathrm{E}+02 \\ & 0.80391520 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0 \cdot 45693010 \mathrm{E}+03 \\ & 0 \cdot 25490360 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0.52540100 \mathrm{E}+03 \\ & 0.76030670 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 89513820 \mathrm{E}+03 \\ & 0 \cdot 13884860 \mathrm{E}+06 \end{aligned}$
$E=2 \cdot 1 \times 10^{13}$	$\begin{aligned} & 0 \cdot 64882060 \mathrm{E}+02 \\ & 0 \cdot 10323450 \mathrm{E}+04 \end{aligned}$	$\begin{aligned} & 0.83782220 \mathrm{E}+02 \\ & 0.25417710 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 45694170 \mathrm{E}+03 \\ & 0 \cdot 80607070 \mathrm{E}+05 \end{aligned}$	$\begin{aligned} & 0 \cdot 52542330 \mathrm{E}+03 \\ & 0 \cdot 24040690 \mathrm{E}+06 \end{aligned}$	$\begin{aligned} & 0 \cdot 89516150 \mathrm{E}+03 \\ & 0 \cdot 43908580 \mathrm{E}+06 \end{aligned}$

i.e.,

$$
\left[\begin{array}{l}
x \tag{39}\\
\theta
\end{array}\right]=\frac{1}{\left(l_{1}+l_{2}\right)}\left[\begin{array}{cc}
l_{2} & l_{1} \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

where \mathbf{T} is the transformation matrix, i.e.,

$$
\mathbf{T}=\frac{1}{\left(l_{1}+l_{2}\right)}\left[\begin{array}{cc}
l_{2} & l_{1} \\
-1 & 1
\end{array}\right] .
$$

So, equation (39) can be transformed by \mathbf{T}

$$
\frac{1}{\left(l_{1}+l_{2}\right)}\left[\begin{array}{cc}
l_{2}^{2} m+J_{0} & l_{1} l_{2} m-J_{0} \tag{40}\\
l_{1} l_{2} m-J_{0} & l_{1}^{2} m+J_{0}
\end{array}\right]\left[\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

From equation (40), one also get the natural circular frequencies: $\omega_{1}=63.56171 \mathrm{rad} / \mathrm{s}, \omega_{2}=89.58034 \mathrm{rad} / \mathrm{s}$.

6.1.2. Composite Element Model

An accurate model of this machine tool would involve the consideration of the lathe bed as an elastic beam with lumped masses attached to it as shown in Figure 8.

Now we apply the Composite Element Method to deal with it. For each element, first we write the stiffness and mass matrices as follows:

For bar element (1) (i.e., left support spring), we take a CEM bar element with $2 c$-DOF CEM, i.e.,

$$
\begin{align*}
& \mathbf{k}^{(1)}=k_{1} \cdot {\left[\begin{array}{rr|rr}
q_{1} & q_{3} & c_{11} & c_{12} \\
-1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
\hline 0 & 0 & \frac{\pi^{2}}{2} & 0 \\
0 & 0 & 0 & \frac{4 \pi^{2}}{2}
\end{array}\right] \begin{array}{l}
q_{1} \\
q_{3} \\
c_{11} \\
c_{12}
\end{array} } \tag{41}\\
& \mathbf{m}^{q_{1}} \begin{array}{l}
\text { (1) }
\end{array} q_{3} \tag{42}\\
& c_{11} c_{12} \\
& {\left[\begin{array}{rr|rr}
\frac{1}{3} & \frac{1}{6} & \frac{1}{\pi} & \frac{1}{2 \pi} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{\pi} & -\frac{1}{2 \pi} \\
\hline \frac{1}{\pi} & \frac{1}{\pi} & \frac{1}{2} & 0 \\
\frac{1}{2 \pi} & -\frac{1}{2 \pi} & 0 & \frac{1}{2}
\end{array}\right] \begin{array}{l}
q_{1} \\
q_{3} \\
c_{11} \\
c_{12}
\end{array} }
\end{align*}
$$

Table 10					
Natural frequencies of a lathe by CEM (considering several simplified models)					
Case	$\omega_{1}(\mathrm{rad} / \mathrm{s})$	$\omega_{2}(\mathrm{rad} / \mathrm{s})$			
Rigid model	$0.63561710 \mathrm{E}+02$	$0 \cdot 89580340 \mathrm{E}+02$			
Case 1	$\begin{aligned} & 0 \cdot 64925860 \mathrm{E}+02 \\ & 0 \cdot 12217690 \mathrm{E}+04 \end{aligned}$	$0 \cdot 44831220 \mathrm{E}+03$	$0 \cdot 51570890 \mathrm{E}+03$	$0 \cdot 88738960 \mathrm{E}+03$	$0 \cdot 10196570 \mathrm{E}+04$
Case 2	$0.64886710 \mathrm{E}+02$	$0 \cdot 83877330 \mathrm{E}+02$	$0 \cdot 45693960 \mathrm{E}+03$	$0.52541850 \mathrm{E}+03$	$0.89515470 \mathrm{E}+03$
Case 3	$0.10323350 \mathrm{E}+04$ $0.67081870 \mathrm{E}+02$	$0 \cdot 10435490 \mathrm{E}+05$ $0 \cdot 12136260 \mathrm{E}+04$			
Case 4	$\begin{aligned} & 0.67042500 \mathrm{E}+02 \\ & 0.44014340 \mathrm{E}+05 \end{aligned}$	$0 \cdot 88497730 \mathrm{E}+02$	$0 \cdot 25634080 \mathrm{E}+04$	$0 \cdot 80921490 \mathrm{E}+04$	$0 \cdot 24115390 \mathrm{E}+05$

where $k_{1}=\left(E_{1} A_{1}\right) / L_{1}$ is the stiffness coefficient, $m_{1}=\rho_{1} A_{1} L_{1}$ is the mass of bar element. Note that only two c-DOF is taken for this bar element.

For bar element (2) (i.e., right support spring), we take a CEM bar element with $2 c$-DOF CEM, i.e.,

$$
\begin{align*}
& \begin{array}{llll}
q_{2} & q_{4} & c_{21} & c_{22}
\end{array} \\
& \mathbf{k}^{(2)}=k_{2} \cdot\left[\begin{array}{cc|cc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
\hline 0 & 0 & \frac{\pi^{2}}{2} & 0 \\
0 & 0 & 0 & \frac{4 \pi^{2}}{2}
\end{array}\right] \begin{array}{l}
q_{2} \\
q_{4} \\
c_{21} \\
c_{22}
\end{array} \tag{43}\\
& \mathbf{m}^{(2)}=m_{2} \cdot\left[\begin{array}{cc|cc}
q_{2} & q_{4} & c_{21} & c_{22} \\
{\left[\begin{array}{cc|cc}
\frac{1}{3} & \frac{1}{6} & \frac{1}{\pi} & \frac{1}{2 \pi} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{\pi} & -\frac{1}{2 \pi} \\
\hline \frac{1}{\pi} & \frac{1}{\pi} & \frac{1}{2} & 0 \\
\frac{1}{2 \pi} & -\frac{1}{2 \pi} & 0 & \frac{1}{2}
\end{array}\right] \begin{array}{c}
\\
q_{2} \\
q_{4} \\
c_{21} \\
c_{22}
\end{array}}
\end{array}\right. \tag{44}
\end{align*}
$$

where $k_{2}=\left(E_{2} A_{2}\right) / L_{2}$ is the stiffness coefficient, $m_{2}=\rho_{2} A_{2} L_{2}$ is the mass of bar element.

For the element (3) (i.e., lathe body), we use a CEM beam element with $2 c$-DOF, i.e.,

$$
\mathbf{k}^{(3)}=\frac{E I}{l^{3}} .\left[\begin{array}{cccccc}
q_{1} & \theta_{1} & q_{2} & \theta_{2} & c_{31} & c_{32} \\
{\left[\begin{array}{ccccc}
12 & & & & 0 \\
6 l & 4 l^{2} & & s y m . & 0 \\
0 & & 0 \\
-12 & -6 l & 12 & & 0 \\
6 l & 2 l^{2} & -6 l & 4 l^{2} & 0 \\
\hline 0 & 0 & 0 & 0 & 1 \cdot 035936 \lambda_{1}^{* 4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right.} & 0 \\
\hline 0.998447 \lambda_{2}^{* 4}
\end{array}\right] \begin{gathered}
\\
q_{1} \\
\theta_{1} \\
q_{2} \\
\theta_{2} \\
c_{31} \\
c_{32}
\end{gathered}
$$

where $\lambda_{1}^{*}=4 \cdot 730041, \lambda_{2}^{*}=7 \cdot 853205$.

For the element (4) (i.e., headstock), it is considered as a rigid lump, i.e.,

$$
\begin{gather*}
\mathbf{k}^{(4)}=[0] \tag{47}\\
\mathbf{m}^{(4)}=\left[m_{A}\right] \tag{48}
\end{gather*}
$$

For the element (5) (i.e., tailstock), also it is considered as a rigid lump, i.e..,

$$
\begin{align*}
\mathbf{k}^{(5)} & =[0] \tag{49}\\
\mathbf{m}^{(5)} & =\left[m_{B}\right] \tag{50}
\end{align*}
$$

The assembled mass and stiffness matrices are given by

$$
\begin{align*}
\mathbf{K} & =\sum_{e=1}^{5} \mathbf{k}^{(e)} \tag{51}\\
\mathbf{M} & =\sum_{e=1}^{5} \mathbf{m}^{(e)} . \tag{52}
\end{align*}
$$

Since the bottoms of the bar elements 1 and 2 are fixed, i.e., $q_{3}=q_{4}=0$, and these two degree of freedoms have to be eliminated from the global stiffness and mass matrices. The parameters of lathe bed (as a beam element) are assumed as: the modulus $E=2.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, the area moment of inertia of cross section $I=0.005333 \mathrm{~m}^{4}$. Others take the same parameters as the rigid model. Now we analyze the effects of different masses of supports on the natural circular frequencies of the lathe by the CEM model proposed above. The results are presented in Table 8, which are compared with those of the rigid model.

From Table 8, one can summarize that the masses of supports will give an obvious impact on vibration of the total lathe, especially on a higher order of
vibration. The CEM is a good means to analyze these influences with less computational effort.

If fix the support masses as $m_{1}=500 \mathrm{~kg}, m_{2}=300 \mathrm{~kg}$, we study the effects of stiffness of the lathe bed (i.e., take different Young's modulus) by the CEM model proposed above. The results are presented in Table 9, which are compared with those of the rigid model.

From Table 9, one can find that the stiffness of the lathe bed will make less impact on the lower order of vibration, but an obvious impact on the higher order of vibration.

In order to investigate the ability of CEM, we discuss several simplified below.

6.1.3. Case 1

Consider the supports with masses and take the lathe bed as a rigid body. So, we let $\theta_{1}=\theta_{2}=c_{31}=c_{32}=0$. One has the following expressions of the mass and stiffness matrices from the globe mass and stiffness matrices.

Figure 9. Components of an automobile.

Figure 10. Rigid model of an automobile.

Figure 11. CEM model of an automobile.

Figure 12. Vibration analysis of a frame by CEM.
$\mathbf{M}=$
\(\left[\begin{array}{cc|ccc}m_{A}+\frac{1}{3} m_{1}+\frac{13}{35} m_{3} \& \& \& \&

\frac{9}{70} m_{3} \& m_{B}+\frac{1}{3} m_{2}+\frac{13}{35} m_{3} \& \& \&

\hline \frac{1}{\pi} m_{1} \& 0 \& \frac{1}{2} m_{1} \& \&

-\frac{1}{2 \pi} m_{1} \& 0 \& \&

0 \& \frac{1}{\pi} m_{2} \& m_{1} \& \& 0

0 \& -\frac{1}{2 \pi} m_{2} \& \& \& \frac{1}{2} m_{2}

\& \& \& \&

\& \& \& \&

\& \& \& \&

c_{12} m_{2}\end{array}\right]\)| q_{1} |
| :--- |
| q_{2} |
| c_{11} |
| c_{22} |
| c_{22} |

6.1.4. Case 2

Also consider the supports with masses and take the lathe bed as a rigid body. But we let $\theta_{1}=\theta_{2} \neq 0$, and $c_{31}=c_{32}=0$. This simplified case can more reasonably reflect the property of the rigid body of the lathe bed.

6.1.5. Case 3

Consider the lathe bed as a rigid body and neglect the masses of the two support bars. So, we let $\theta_{1}=\theta_{2}=c_{31}=c_{32}=0, c_{11}=c_{12}=c_{21}=c_{22}=0, m_{1}=m_{2}=0$. One has the following mass and stiffness matrices

$$
\begin{gather*}
q_{1} \\
\mathbf{K}=\left[\begin{array}{cc}
k_{1}+\frac{12 E I}{l^{3}} & -\frac{12 E I}{l^{3}} \\
-\frac{12 E I}{l^{3}} & k_{2}+\frac{12 E I}{l^{3}}
\end{array}\right] \begin{array}{l}
q_{1} \\
q_{1}
\end{array} q_{2} \tag{55}\\
q_{2} \\
\mathbf{M}=\left[\begin{array}{cc}
m_{A}+\frac{13}{35} m_{3} & \frac{9}{70} m_{3} \\
\frac{9}{70} m_{3} & m_{B}+\frac{13}{35} m_{3}
\end{array}\right] q_{1} \tag{56}\\
q_{2}
\end{gather*}
$$

Consider the lathe bed as an elastic beam and neglect the masses of the two support bars. So, we let $c_{11}=c_{12}=c_{21}=c_{22}=0$, as well as $m_{1}=m_{2}=0$. One has the following mass and stiffness matrices.

$$
\boldsymbol{K}=\frac{E I}{l^{3}} .
$$

q_{1}	θ_{1}	q_{2}	θ_{2}	c_{31}	c_{32}	
$\frac{k_{1} l^{3}}{E I}+12$				0	0	q_{1}
$6 l$	$4 l^{2}$		sym.	0	0	θ_{1}
-12		$\frac{k_{2} l^{3}}{E I}+12$		0	0	q_{2}
$6 l$	$2 l^{2}$	-6l	$4 l^{2}$	0	0	θ_{2}
0	0	0	0	$1.035936 \lambda_{1}^{* 4}$	0	c_{31}
0	0	0	0	0	$0 \cdot 998447 \lambda_{2}^{* 4}$	c_{32}

where $\lambda_{1}^{*}=4.730041, \lambda_{2}^{*}=7.853205$.

$$
\left.\begin{array}{l}
\mathbf{M}=m_{3} . \\
q_{1}
\end{array} \theta_{1} \quad q_{2} \quad \theta_{2} \quad c_{11}\right)
$$

Similarly, the parameters of the lathe bed (as a beam element) are: $E=2.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \quad I=0.005333 \mathrm{~m}^{4}$, the parameters of supports are: $m_{1}=500 \mathrm{~kg}, m_{2}=300 \mathrm{~kg}, k_{1}=1 \times 10^{7} \mathrm{~N} / \mathrm{m}, k_{2}=8 \times 10^{6} \mathrm{~N} / \mathrm{m}$. Other parameters are the same as rigid model. Now we calculate the natural frequencies of the lathe by the four simplified models of CEM which are proposed above. The results are presented in Table 10, which are compared with those of the rigid model.

From Table 10, we can conclude:
(1) Since we have assumed that $\theta_{1}=\theta_{2} \neq 0$ in model 2 (case 2), the results are fully close to those of the rigid model.
(2) In simplified model 4 (case 4), we have assumed that $m_{1}=m_{2}=0$. The results also agree with those of the rigid model.
(3) Simplified models 1 and 3 give poor results. It is very likely that due to the fact that the assumption $\theta_{1}=\theta_{2}=0$ is not appropriate.

6.2. Vibration analysis of an automobile

As an example, consider the automobile shown in Figure 9 [5].

6.2.1. Rigid model

For a simplified vibration analysis, the automobile body and driver can be considered as a rigid body having mass and inertia, and it can be assumed to be supported on springs at the ends. Thus the final model will be a rigid body of total mass m and mass moment of inertia J_{0} and its C.G., resting on springs of stiffnesses k_{1} and k_{2}, as shown in Figure 10.

We assume that the parameters in Figure 10 are: the mass of driver $m_{0}=80 \mathrm{~kg}$, the mass of automobile body $m_{3}=1200 \mathrm{~kg}$, the length of automobile $l=3.5 \mathrm{~m}$, the height of frame beam $h=0.2 \mathrm{~m}$, the stiffness of support wheels $k_{1}=k_{2}=2 \times 10^{5} \mathrm{~N} / \mathrm{m}$, the position of C.G. point $l_{1}=1.5 \mathrm{~m}, l_{2}=2 \mathrm{~m}$. So one can calculate the total mass $m=1280 \mathrm{~kg}$, the total mass moment of inertia $J_{0}=1304 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.

Similar to the last example, we use the $[x(t), \theta(t)]$ coordinate system and the [$\left.x_{1}(t), x_{2}(t)\right]$ coordinate system to describe the equation of motion.

- Equations of motion using $x(t)$ and $\theta(t)$

Similar to the lathe problem, the equation of motion can be written as

$$
\left[\begin{array}{cc}
m & 0 \tag{59}\\
0 & J_{0}
\end{array}\right]\left[\begin{array}{c}
\ddot{x} \\
\ddot{\theta}
\end{array}\right]+\left[\begin{array}{cc}
\left(k_{1}+k_{2}\right) & -\left(k_{1} l_{1}-k_{2} l_{2}\right) \\
-\left(k_{1} l_{1}-k_{2} l_{2}\right) & \left(k_{1} l_{1}^{2}+k_{2} l_{2}^{2}\right)
\end{array}\right]\left[\begin{array}{l}
x \\
\theta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From equation (59), one obtains the natural circular frequencies: $\omega_{1}=17.41713 \mathrm{rad} / \mathrm{s}, \omega_{2}=31.1084 \mathrm{rad} / \mathrm{s}$.

- Equations of motion using $x_{1}(t)$ and $x_{2}(x)$

Using the transformation relationship \mathbf{T} between (x, θ) and $\left(x_{1}, x_{2}\right)$, i.e.,

$$
\left[\begin{array}{l}
x \tag{60}\\
\theta
\end{array}\right]=\frac{1}{\left(l_{1}+l_{2}\right)}\left[\begin{array}{cc}
l_{2} & l_{1} \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

we have

$$
\overline{\left(l_{1}+l_{2}\right)^{2}}\left[\begin{array}{cc}
l_{2}^{2} m+J_{0} & l_{1} l_{2} m-J_{0} \tag{61}\\
l_{1} l_{2} m-J_{0} & l_{1}^{2} m+J_{0}
\end{array}\right]\left[\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

From equation (61), one obtains the natural circular frequencies: $\omega_{1}=17.41713 \mathrm{rad} / \mathrm{s}, \omega_{2}=31.1084 \mathrm{rad} / \mathrm{s}$.

6.2.2. Composite element model

An accurate model of this automobile should consider the automobile body as an elastic beam with the lumped mass (driver) and the mass-coupled spring elements attached to it as shown in Figure 11. Now we apply the CEM to analyze it. First of all, for each element we write the stiffness and mass matrices as follows:

For element (1) (i.e., the left wheel, we use a CEM bar element with $2 c$-DOF CEM), one has

$$
\left.\begin{array}{c}
q_{1} \\
\mathbf{k}_{4} \\
\mathbf{k}^{(1)}=k_{1} \cdot c_{11} \\
c_{12} \tag{63}\\
{\left[\begin{array}{rr|rr}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
\hline 0 & 0 & \frac{\pi^{2}}{2} & 0 \\
0 & 0 & 0 & \frac{4 \pi^{2}}{2}
\end{array}\right] \begin{array}{l}
q_{1} \\
q_{4} \\
c_{11} \\
c_{12}
\end{array}} \\
\mathbf{m}^{q_{1}} \begin{array}{l}
\text { (1) }
\end{array}=m_{4} \\
q_{1} \cdot \\
c_{11} \\
c_{12}
\end{array}\right]\left[\begin{array}{rr|rr}
\frac{1}{3} & \frac{1}{6} & \frac{1}{\pi} & \frac{1}{2 \pi} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{\pi} & -\frac{1}{2 \pi} \\
\hline \frac{1}{\pi} & \frac{1}{\pi} & \frac{1}{2} & 0 \\
\frac{1}{2 \pi} & -\frac{1}{2 \pi} & 0 & \frac{1}{2}
\end{array}\right] \begin{aligned}
& q_{1} \\
& q_{4} \\
& c_{11} \\
& c_{12}
\end{aligned}
$$

where $k_{1}=\left(E_{1} A_{1}\right) / L_{1}$ is the stiffness coefficient, $m_{1}=\rho_{1} A_{1} L_{1}$ is the mass of bar element. Note that we take only two c-DOF is taken for this bar element.
Table 11

	¢0＋\＃0IS98LZL．0		¢0＋－ 0 ¢ $¢ 0970 \varepsilon \cdot 0$	¢0 + H089ES6SI． 0	
$\begin{aligned} & \llcorner 0+\mathfrak{Z} 0 I L 9 \downarrow \mathcal{E} 96 \cdot 0 \\ & \mathcal{\varepsilon} 0+\mathfrak{Z} 08 \vdash 90 \varepsilon 9 \varepsilon \cdot 0 \end{aligned}$	t0＋G0L0L088¢．0	t0＋30L8zzL0 0	t0＋30ILI090I．0	$\varepsilon 0+\mathrm{H} 00 \mathrm{LEtS} 9 \varepsilon \cdot 0$	$\begin{array}{rl} \delta_{y} y={ }^{\tau} w & ={ }^{\prime} u \\ \delta y & u 0 z \end{array}$
	$\varepsilon 0+30 t 85998 \mathrm{~L} \cdot 0$	$\varepsilon 0+$ 300IZLZ8I．0	z0＋马0979100¢．0		
	$\bigcirc 0+$ G0¢I¢6IEL 0	$\varsigma_{0} 0+30866 \mathrm{~L}$ L \downarrow •0		¢0＋H008t¢I9I•0	
t0＋H06SSLI86．0	t0＋H000¢966s．0	t0＋－moscrtole 0	to＋－3092II60I．0	$\varepsilon 0+$ G0tSttS9 $\varepsilon^{\text {c }} 0$	
$\varepsilon 0+$ G0z0tI $\varepsilon 9 \varepsilon \cdot 0$	$\varepsilon 0+$ H0zEL998L．0	$\varepsilon 0+308988281 \cdot 0$	$z 0+30 t 9 t ¢ 00 \varepsilon \cdot 0$	z0＋－ 08 ZLEILI． 0	
	¢0＋－ $0 \downarrow 8 \mathrm{LI}$ ¢ $\mathcal{L} \cdot 0$		$\varsigma_{0}+$ z0L829L0¢．0	¢0＋－ 0 LItLz9I•0	
t0＋H06LS9t66．0	t0＋\＃08696909．0				$\begin{aligned} \delta_{y} y={ }^{\tau} w & =1 u \\ \delta_{y} 08 & ={ }^{\prime} u \end{aligned}$
$\varepsilon 0+300 \mathrm{I}$ I $£ 9 \varepsilon \cdot 0$	$\varepsilon 0+$ G0LI8998L．0	$\varepsilon 0+30 \varepsilon \leftarrow 8828 \mathrm{I} \cdot 0$	$z 0+30 t \varsigma 9 L 00 \varepsilon \cdot 0$	Z0＋G0ヶて96\＆LI．0	
	$\varsigma_{0}+$ H09LELLSL．0	$\varsigma_{0}+300 \angle 82 L 9 t \cdot 0$		¢0＋－ 0 ¢¢00t9 \cdot－0	
¢0＋－30I0Iz00I•0	t0＋30ヶL9LII $9 \cdot 0$	$t 0+30 ¢ \leq I L t I \varepsilon \cdot 0$	t0＋306E6LIII．0	$\varepsilon 0+$ H0¢E88tIs．0	
$\varepsilon 0+$－ 0 ¢6Z6ZIS．0	$\varepsilon 0+$ goL86z09z．0	$\varepsilon 0+30987 t L$ cz．0	$20+306 \mathrm{~L} 0080 \varepsilon \cdot 0$	z0＋G0tt0ESLI． 0	8Y $08{ }^{\circ} \mathrm{m}$
$\begin{aligned} & \varsigma 0+\exists 0+\angle \varepsilon z 98 L \cdot 0 \\ & t 0+\exists 09 \angle 6 \angle 919 \cdot 0 \end{aligned}$	$\varsigma 0+$ g0¢9988Lt．0	$\varsigma_{0}+300208 t I \varepsilon \cdot 0$		¢0＋\＃0z¢00I0I•0	$\begin{array}{r} \delta_{y} 0={ }^{\tau} u={ }^{\prime} u \\ \text { sy } 08={ }^{\circ} u \\ \text { әрои p!s! } \end{array}$
	†0＋G0z6L0LIE． 0	ち0＋G0ıZ0ヶてII．0	$20+$ G088t9¢ $1 \varepsilon \cdot 0$	$20+$ 70L6999LI 0	
			20＋צ00ヶ80 5 ¢ $\cdot 0$	20＋\＃ $0 ¢ I L I t L I \cdot 0$	
			（s／pex ${ }^{\text {r }}$ \％	（s／pe．ı）${ }^{\text {¢ }}$	วse〕

Table 12

Natural frequencies of an automobile by CEM (considering the effects of different stiffnesses of automobile body)						
$\left(\mathrm{N} / \mathrm{m}^{2}\right)$		$\omega_{1}(\mathrm{rad} / \mathrm{s})$	$\omega_{2}(\mathrm{rad} / \mathrm{s})$	\cdots	\cdots	
Rigid model	$0 \cdot 17417130 \mathrm{E}+02$	$0 \cdot 31108400 \mathrm{E}+02$				
$E=2 \cdot 1 \times 10^{10}$	$0 \cdot 17316540 \mathrm{E}+02$	$0 \cdot 30057430 \mathrm{E}+02$	$0 \cdot 18048950 \mathrm{E}+03$	$0 \cdot 18643350 \mathrm{E}+03$	$0 \cdot 33540810 \mathrm{E}+03$	
	$0 \cdot 36488960 \mathrm{E}+03$	$0 \cdot 38624920 \mathrm{E}+03$	$0 \cdot 99080920 \mathrm{E}+03$	$0 \cdot 19209460 \mathrm{E}+04$	$0 \cdot 31462720 \mathrm{E}+04$	
	$0 \cdot 51459520 \mathrm{E}+04$	$0 \cdot 97283420 \mathrm{E}+04$	$0 \cdot 14469630 \mathrm{E}+05$	$0 \cdot 23250610 \mathrm{E}+05$		
$E=2 \cdot 1 \times 10^{11}$	$0 \cdot 17396240 \mathrm{E}+02$	$0 \cdot 30076540 \mathrm{E}+02$	$0 \cdot 18288430 \mathrm{E}+03$	$0 \cdot 18668170 \mathrm{E}+03$	$0 \cdot 36318100 \mathrm{E}+03$	
	$0 \cdot 36545020 \mathrm{E}+03$	$0 \cdot 11091880 \mathrm{E}+04$	$0 \cdot 31236140 \mathrm{E}+04$	$0 \cdot 60696980 \mathrm{E}+04$	$0 \cdot 99465790 \mathrm{E}+04$	
	$0 \cdot 16271110 \mathrm{E}+05$	$0 \cdot 30762870 \mathrm{E}+05$	$0 \cdot 45741330 \mathrm{E}+05$	$0 \cdot 73511840 \mathrm{E}+05$		
$E=2 \cdot 1 \times 10^{12}$	$0 \cdot 17397450 \mathrm{E}+02$	$0 \cdot 30097970 \mathrm{E}+02$	$0 \cdot 18306700 \mathrm{E}+03$	$0 \cdot 18670590 \mathrm{E}+03$	$0 \cdot 36358110 \mathrm{E}+03$	
	$0 \cdot 36549970 \mathrm{E}+03$	$0 \cdot 34989120 \mathrm{E}+04$	$0 \cdot 98748820 \mathrm{E}+04$	$0 \cdot 19192520 \mathrm{E}+05$	$0 \cdot 31452750 \mathrm{E}+05$	
	$0 \cdot 51452880 \mathrm{E}+05$	$0 \cdot 97265480 \mathrm{E}+05$	$0 \cdot 14459710 \mathrm{E}+06$	$0 \cdot 23248150 \mathrm{E}+06$		
$E=2 \cdot 1 \times 10^{13}$	$0 \cdot 17405690 \mathrm{E}+02$	$0 \cdot 30215600 \mathrm{E}+02$	$0 \cdot 18308480 \mathrm{E}+03$	$0 \cdot 18670950 \mathrm{E}+03$	$0 \cdot 36361730 \mathrm{E}+03$	
	$0 \cdot 36550470 \mathrm{E}+03$	$0 \cdot 11061950 \mathrm{E}+05$	$0 \cdot 31226120 \mathrm{E}+05$	$0 \cdot 60691750 \mathrm{E}+05$	$0.99462200 \mathrm{E}+05$	
	$0 \cdot 16270510 \mathrm{E}+06$	$0 \cdot 30758030 \mathrm{E}+06$	$0 \cdot 73426810 \mathrm{E}+06$	$0 \cdot 45733800 \mathrm{E}+06$		

Table 13
Natural circular frequencies of an automobile by CEM (considering several simplified models)

Case	$\omega_{1}(\mathrm{rad} / \mathrm{s})$	$\omega_{2}(\mathrm{rad} / \mathrm{s})$	\cdots	\cdots	
Rigid model	$0 \cdot 17417130 \mathrm{E}+02$	$0 \cdot 31108400 \mathrm{E}+02$			
Case 1	$0 \cdot 17405000 \mathrm{E}+02$	$0 \cdot 18125360 \mathrm{E}+03$	$0 \cdot 18305520 \mathrm{E}+03$	$0 \cdot 36248310 \mathrm{E}+03$	$0 \cdot 36355620 \mathrm{E}+03$
	$0 \cdot 10734790 \mathrm{E}+04$	$0 \cdot 22105650 \mathrm{E}+04$			
Case 2	$0 \cdot 17676370 \mathrm{E}+02$	$0 \cdot 10821920 \mathrm{E}+04$	$0 \cdot 22312500 \mathrm{E}+04$		
Case 3	$0 \cdot 17666970 \mathrm{E}+02$	$0 \cdot 31564880 \mathrm{E}+02$	$0 \cdot 11240210 \mathrm{E}+04$	$0 \cdot 31707920 \mathrm{E}+04$	$0 \cdot 61679760 \mathrm{E}+04$
	$0 \cdot 10100520 \mathrm{E}+05$	$0 \cdot 16542480 \mathrm{E}+05$	$0 \cdot 31480200 \mathrm{E}+05$	$0 \cdot 47886630 \mathrm{E}+05$	$0 \cdot 78623740 \mathrm{E}+05$

[^2]For element (2) (i.e., the right wheel, we also use a CEM bar element with $2 c$-DOF CEM) one has

$$
\begin{align*}
& \begin{array}{llll}
q_{2} & q_{5} & c_{21} & c_{22}
\end{array} \\
& \mathbf{k}^{(2)}=k_{2} \cdot\left[\begin{array}{rr|rc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
\hline 0 & 0 & \frac{\pi^{2}}{2} & 0 \\
0 & 0 & 0 & \frac{4 \pi^{2}}{2}
\end{array}\right] \begin{array}{c}
q_{2} \\
q_{5} \\
c_{21} \\
c_{22}
\end{array} \tag{64}\\
& \begin{array}{llll}
q_{2} & q_{5} & c_{21} & c_{22}
\end{array} \\
& \mathbf{m}^{(2)}=m_{2} \cdot\left[\begin{array}{cc|cc}
\frac{1}{3} & \frac{1}{6} & \frac{1}{\pi} & \frac{1}{2 \pi} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{\pi} & -\frac{1}{2 \pi} \\
\hline \frac{1}{\pi} & \frac{1}{\pi} & \frac{1}{2} & 0 \\
\frac{1}{2 \pi} & -\frac{1}{2 \pi} & 0 & \frac{1}{2}
\end{array}\right] \begin{array}{l}
q_{2} \\
q_{5} \\
c_{21} \\
c_{22}
\end{array} \tag{65}
\end{align*}
$$

where $k_{2}=\left(E_{2} A_{2}\right) / L_{2}$ is the stiffness coefficient, $m_{2}=\rho_{2} A_{2} L_{2}$ is the mass of bar element.

For the element (3) (i.e., the left part of the automobile body), we can take a CEM beam element with $2 c$-DOF, i.e.,

$$
\begin{gather*}
\mathbf{k}^{(3)}=\frac{E I}{l_{1}^{3}} \cdot\left[\begin{array}{cccc|cc}
q_{1} & q_{3} & \theta_{3} & c_{31} & c_{32} \\
{\left[\begin{array}{ccccc}
12 & & & & 0 \\
6 l_{1} & 4 l_{1}^{2} & & s y m . & 0 \\
-12 & -6 l_{1} & 12 & & 0 \\
6 l_{1} & 2 l_{1}^{2} & -6 l_{1} & 4 l_{1}^{2} & 0 \\
\hline 0 & 0 & 0 & 0 & 1 \cdot 035936 \lambda_{1}^{* 4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right.} \\
\hline 0.998447 \lambda_{2}^{* 4}
\end{array}\right]
\end{gather*}
$$

where $\lambda_{1}^{*}=4.730041, \lambda_{2}^{*}=7.853205$.

For the element (5) (i.e., the driver), it is considered as a rigid lump, i.e.,

$$
\begin{align*}
\mathbf{k}^{(5)} & =[0] \tag{70}\\
\mathbf{m}^{(5)} & =\left[m_{0}\right] \tag{71}
\end{align*}
$$

The assembled mass and stiffness matrices are given as

$$
\begin{align*}
\mathbf{K} & =\sum_{e=1}^{5} \mathbf{k}^{(e)} \tag{72}\\
\mathbf{M} & =\sum_{e=1}^{5} \mathbf{m}^{(e)} . \tag{73}
\end{align*}
$$

Since the bottoms of two bar elements are fixed, one has $q_{4}=q_{5}=0$, and these two degrees of freedom have to be eliminated from the global stiffness and mass matrices. The parameters of the automobile body (as a beam element) are: $E=2 \cdot 1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, the area moment of inertia of cross section $I=0.0006667 \mathrm{~m}^{4}$. Other parameters are the same as the rigid model. Now we analyze the effects of different masses of support wheels and driver on the natural circular frequencies of the lathe by the CEM model proposed above. The results are presented in Table 11, which are compared with those of the rigid model.

From Table 11, one can summarize that the masses of wheels and drivers will give an obvious impact on vibration properties of the total automobile, especially on the higher order of vibration.
The masses of wheels and drivers are fixed as $m_{1}=m_{2}=60 \mathrm{~kg}, m_{0}=80 \mathrm{~kg}$. We study the effects of stiffness of the automobile body (i.e., consider different Young's modulus) on the vibration properties of the total automobile by the CEM model proposed above. The results are presented in Table 12, which are compared with those of the rigid model.

From Table 12, one can find that the stiffness of the automobile body will make less impact on the lower order of vibration of the total automobile, but an obvious impact on the higher order of vibration.

Below we discuss several simplified cases.

6.2.3. Case 1

Consider the automobile body as a rigid body. So, we take $\theta_{1}=\theta_{2}=\theta_{3}=c_{31}=c_{32}=c_{41}=c_{42}=0$. One can obtain the corresponding expressions of the mass and stiffness matrices from the globe mass and stiffness matrices.

6.2.4. Case 2

Consider the automobile body as a rigid body, and neglect the masses of two support springs. So, we take $\theta_{1}=\theta_{2}=\theta_{3}=c_{31}=c_{32}=c_{41}=c_{42}=0$, $c_{11}=c_{12}=c_{21}=c_{22}=0, \quad m_{1}=m_{2}=0$. One can obtain the corresponding expressions of the mass and stiffness matrices from the globe mass and stiffness matrices.

6.2.5. Case 3

Consider the automobile body as a elastic beam, and neglect the masses of two support bars. So, we take $c_{11}=c_{12}=c_{21}=c_{22}=0$, as well as $m_{1}=m_{2}=0$. Also one can obtain the corresponding mass and stiffness matrices.

From Table 13, we can find that the simplified model 3 (case 3) gives a good result to the rigid model since we have neglected the masses of support wheels (i.e., $m_{1}=m_{2}=0$), but the simplified models 1 and 2 give poor appropriate results since we have let $\theta_{1}=\theta_{2}=0$ which is not suitable for the rigid case.

6.3. Vibration analysis of a frame

Consider a frame made of 4 beams shown in Figure 12, and find the natural frequencies. The related data are: $L=6 \mathrm{~m}$, cross-sectional area $A=0 \cdot 1 \mathrm{~m}^{2}$, area moment of inertia of the cross section $I=1 \times 10^{-2} \mathrm{~m}^{4}$, density $\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$, Young's modulus $E=10^{3} \mathrm{MPa}$. We idealize the frame into 4 beam elements by the CEM. The resultant natural frequencies are listed in Table 14.

ACKNOWLEDGMENT

This Project 59775017 is supported by National Natural Science Foundation of China. Also, the work involved in the paper is supported by Alexander von Humboldt Foundation of Germany and Doctoral Dissertation Foundation of Tsinghua University.

REFERENCES

1. S. S. Rao 1989 The Finite Element Method in Engineering. Oxford: Pergamon Press; 2nd edition.
2. R. D. Cook 1981 Concepts and Applications of Finite Element Analysis. New York: Wiley; 2nd edition.
3. O. C. Zienkiewicz and R. L. Taylor 1989 The Finite Element Method, Vol. 1, Basic Formulation and Linear Problems. London: McGraw-Hill; 4th edition.
4. W. D. Pilkey and Wunderlich 1994 Mechanics of Structures: Variational and Computational Methods. Boca Raton, FL: CRC Press.
5. S. S. Rao 1986 Mechanical Vibration. Reading, MA: Addison-Wesley.

[^0]: * Note: the symbol CEM $(1 \times 1 c)$ of Table 1 means using one composite element with $1 c$-DOF,
 CEM $(1 \times 4 c)$ means using one composite element with $4 c$-DOF, and so on.

[^1]: * Note: the symbol FEM (4e) of Table 3 denotes using 4 beam elements of the conventional FEM, CEM $(4 \times 1 c)$ means using 4 composite element with $1 c$-DOF each, and so on.

[^2]: Table 14
 Natural circular frequencies of a 4-beam fram by CEM

 | | Element (DOF) | $\omega_{1}(\mathrm{rad} / \mathrm{s})$ | $\omega_{2}(\mathrm{rad} / \mathrm{s})$ | \cdots | \cdots |
 | :--- | :---: | :---: | :---: | :---: | :---: |
 | CEM | $4(22)$ | $0 \cdot 11794540 \mathrm{E}+02$ | $0 \cdot 12301100 \mathrm{E}+02$ | $0 \cdot 15841500 \mathrm{E}+02$ | $0 \cdot 20125440 \mathrm{E}+02$ |
 | | | $0 \cdot 21708130 \mathrm{E}+02$ | $0 \cdot 25305280 \mathrm{E}+02$ | $0 \cdot 31505780 \mathrm{E}+02$ | $0 \cdot 39506160 \mathrm{E}+02$ |
 | | | $0 \cdot 77215550 \mathrm{E}+02$ | $0 \cdot 55510077 \mathrm{E}+02$ | $0.60401240 \mathrm{E}+02$ | $0 \cdot 6107850 \mathrm{E}+02$ |
 | | $0 \cdot 73408120 \mathrm{E}+02$ | $0 \cdot 79044710 \mathrm{E}+02$ | $0 \cdot 87110100 \mathrm{E}+02$ | $0 \cdot 99372490 \mathrm{E}+02$ | |
 | | | $0 \cdot 12780200 \mathrm{E}+03$ | $0 \cdot 12954950 \mathrm{E}+03$ | $0 \cdot 13554450 \mathrm{E}+03$ | $0 \cdot 15016910 \mathrm{E}+03$ |
 | | | $0 \cdot 17765660 \mathrm{E}+03$ | $0 \cdot 22132360 \mathrm{E}+03$ | | |

